The measurements of closeness to graceful graphs

نویسندگان

  • Rikio Ichishima
  • Francesc A. Muntaner-Batle
  • Akito Oshima
چکیده

The beta-number, β (G), of a graph G is defined to be either the smallest positive integer n for which there exists an injective function f : V (G) → {0, 1, . . . , n} such that each uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting set of edge labels is {c, c+ 1, . . . , c+ |E (G)| − 1} for some positive integer c, or +∞ if there exists no such integer n. If c = 1, the resulting beta-number is called the strong beta-number of G and denoted by βs (G). In this paper, some necessary conditions for a graph to have finite (strong) beta-number are presented, which lead us to sufficient conditions for a graph to have infinite (strong) beta-number. By means of these, the formulas for the (strong) beta-number of certain graphs are determined. Moreover, nontrivial trees and forests are shown to have finite strong beta-number. Finally, three open problems are proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Graceful Graphs with Caterpillars

A graceful labeling of a graph G of size n is an injective assignment of integers from {0, 1,..., n} to the vertices of G, such that when each edge of G has assigned a weight, given by the absolute dierence of the labels of its end vertices, the set of weights is {1, 2,..., n}. If a graceful labeling f of a bipartite graph G assigns the smaller labels to one of the two stable sets of G, then f ...

متن کامل

Snakes and Caterpillars in Graceful Graphs

Graceful labelings use a prominent place among difference vertex labelings. In this work we present new families of graceful graphs all of them obtained applying a general substitution result. This substitution is applied here to replace some paths with some trees with a more complex structures. Two caterpillars with the same size are said to be textit{analogous} if thelarger stable sets, in bo...

متن کامل

Graceful labelings of the generalized Petersen graphs

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

متن کامل

Three Graceful Operations

A graph of size n is said to be graceful when is possible toassign distinct integers from {0, 1, . . . , n} to its verticesand {|f(u)−f(v)| : uv ∈ E(G)} consists of n integers. Inthis paper we present broader families of graceful graphs; these families are obtained via three different operations: the third power of a caterpillar, the symmetric product of G and K2 , and the disjoint union of G a...

متن کامل

Connections between labellings of trees

There are many long-standing conjectures related with some labellings of trees. It is important to connect labellings that are related with conjectures. We find some connections between known labellings of simple graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2015